Last week, we introduced an artist who issued his own CRC20 tokens LCT to motivate his community. When the members published their own painting, then the member will receive the LCT token as a reward. The LCT token could be used to exchange the artist’s painting.

You can easily issue your CRC20 token with CyberMiles App, if you have at least 1,000 CMT in your CMT address.

But if you want to write some code and start from scratch, you can also use BUIDL for CMT to issue your own tokens.

Step 1

Open the BUIDL IDE tool for CMT in any browser. http://buidl.secondstate.io/cmt

Step 2

Open the Accounts tab and send a small amount of CMTs to your default account.

If you have CyberMiles’ Venus wallet, you could opt to use Venus in the Providers tab. BUIDL and dapps it creates will now use the default account in Venus to make contract calls and to pay for gas.

Step 3

Let’s look at the code first.

The smart contract is complete. It allows many functions, such as the defining of ownership of this smart contract, limiting the pausing of this smart contract to only by the owner, transferring of ownership.

Let’s see the key part of this smart contract. You can define the name, symbol, decimals and total supply of your own CRC 20 Tokens.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
contract TestToken is PausableToken {

    string public name = "Newsletter";
    string public symbol = "News";
    uint public decimals = 10;
    uint public totalSupply = 100000000000000000000;

    constructor () public {
        balances[msg.sender] = totalSupply;
    }
}

Now copy and paste the code to the contract section of BUIDL IDE.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
pragma lity ^1.2.4;

// File: zeppelin-solidity/contracts/token/ERC20/ERC20Basic.sol

/**
 * @title ERC20Basic
 * @dev Simpler version of ERC20 interface
 * @dev see https://github.com/ethereum/EIPs/issues/179
 */
contract ERC20Basic {
  function totalSupply() public view returns (uint256);
  function balanceOf(address who) public view returns (uint256);
  function transfer(address to, uint256 value) public returns (bool);
  event Transfer(address indexed from, address indexed to, uint256 value);
}

// File: zeppelin-solidity/contracts/token/ERC20/BasicToken.sol

/**
 * @title Basic token
 * @dev Basic version of StandardToken, with no allowances.
 */
contract BasicToken is ERC20Basic {

  mapping(address => safeuint) balances;

  uint256 totalSupply_;

  /**
  * @dev total number of tokens in existence
  */
  function totalSupply() public view returns (uint256) {
    return totalSupply_;
  }

  /**
  * @dev transfer token for a specified address
  * @param _to The address to transfer to.
  * @param _value The amount to be transferred.
  */
  function transfer(address _to, uint256 _value) public returns (bool) {
    require(_to != address(0));
    require(_value <= balances[msg.sender]);

    balances[msg.sender] = balances[msg.sender] - _value;
    balances[_to] = balances[_to] + _value;
    Transfer(msg.sender, _to, _value);
    return true;
  }

  /**
  * @dev Gets the balance of the specified address.
  * @param _owner The address to query the the balance of.
  * @return An uint256 representing the amount owned by the passed address.
  */
  function balanceOf(address _owner) public view returns (uint256 balance) {
    return uint256(balances[_owner]);
  }

}

// File: zeppelin-solidity/contracts/token/ERC20/ERC20.sol

/**
 * @title ERC20 interface
 * @dev see https://github.com/ethereum/EIPs/issues/20
 */
contract ERC20 is ERC20Basic {
  function allowance(address owner, address spender) public view returns (uint256);
  function transferFrom(address from, address to, uint256 value) public returns (bool);
  function approve(address spender, uint256 value) public returns (bool);
  event Approval(address indexed owner, address indexed spender, uint256 value);
}

// File: zeppelin-solidity/contracts/token/ERC20/StandardToken.sol

/**
 * @title Standard ERC20 token
 *
 * @dev Implementation of the basic standard token.
 * @dev https://github.com/ethereum/EIPs/issues/20
 * @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
 */
contract StandardToken is ERC20, BasicToken {

  mapping (address => mapping (address => uint256)) internal allowed;


  /**
   * @dev Transfer tokens from one address to another
   * @param _from address The address which you want to send tokens from
   * @param _to address The address which you want to transfer to
   * @param _value uint256 the amount of tokens to be transferred
   */
  function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
    require(_to != address(0));
    require(_value <= balances[_from]);
    require(_value <= allowed[_from][msg.sender]);

    balances[_from] = balances[_from] - _value;
    balances[_to] = balances[_to] + _value;
    allowed[_from][msg.sender] = allowed[_from][msg.sender] - _value;
    Transfer(_from, _to, _value);
    return true;
  }

  /**
   * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
   *
   * Beware that changing an allowance with this method brings the risk that someone may use both the old
   * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
   * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
   * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
   * @param _spender The address which will spend the funds.
   * @param _value The amount of tokens to be spent.
   */
  function approve(address _spender, uint256 _value) public returns (bool) {
    allowed[msg.sender][_spender] = _value;
    Approval(msg.sender, _spender, _value);
    return true;
  }

  /**
   * @dev Function to check the amount of tokens that an owner allowed to a spender.
   * @param _owner address The address which owns the funds.
   * @param _spender address The address which will spend the funds.
   * @return A uint256 specifying the amount of tokens still available for the spender.
   */
  function allowance(address _owner, address _spender) public view returns (uint256) {
    return allowed[_owner][_spender];
  }

  /**
   * @dev Increase the amount of tokens that an owner allowed to a spender.
   *
   * approve should be called when allowed[_spender] == 0. To increment
   * allowed value is better to use this function to avoid 2 calls (and wait until
   * the first transaction is mined)
   * From MonolithDAO Token.sol
   * @param _spender The address which will spend the funds.
   * @param _addedValue The amount of tokens to increase the allowance by.
   */
  function increaseApproval(address _spender, uint _addedValue) public returns (bool) {
    allowed[msg.sender][_spender] = allowed[msg.sender][_spender] + _addedValue;
    Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
    return true;
  }

  /**
   * @dev Decrease the amount of tokens that an owner allowed to a spender.
   *
   * approve should be called when allowed[_spender] == 0. To decrement
   * allowed value is better to use this function to avoid 2 calls (and wait until
   * the first transaction is mined)
   * From MonolithDAO Token.sol
   * @param _spender The address which will spend the funds.
   * @param _subtractedValue The amount of tokens to decrease the allowance by.
   */
  function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) {
    uint256 oldValue = allowed[msg.sender][_spender];
    if (_subtractedValue > oldValue) {
      allowed[msg.sender][_spender] = 0;
    } else {
      allowed[msg.sender][_spender] = oldValue - _subtractedValue;
    }
    Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
    return true;
  }

}

// File: zeppelin-solidity/contracts/ownership/Ownable.sol

/**
 * @title Ownable
 * @dev The Ownable contract has an owner address, and provides basic authorization control
 * functions, this simplifies the implementation of "user permissions".
 */
contract Ownable {
  address public owner;


  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);


  /**
   * @dev The Ownable constructor sets the original `owner` of the contract to the sender
   * account.
   */
  function Ownable() public {
    owner = msg.sender;
  }

  /**
   * @dev Throws if called by any account other than the owner.
   */
  modifier onlyOwner() {
    require(msg.sender == owner);
    _;
  }

  /**
   * @dev Allows the current owner to transfer control of the contract to a newOwner.
   * @param newOwner The address to transfer ownership to.
   */
  function transferOwnership(address newOwner) public onlyOwner {
    require(newOwner != address(0));
    OwnershipTransferred(owner, newOwner);
    owner = newOwner;
  }

}

// File: zeppelin-solidity/contracts/lifecycle/Pausable.sol

/**
 * @title Pausable
 * @dev Base contract which allows children to implement an emergency stop mechanism.
 */
contract Pausable is Ownable {
  event Pause();
  event Unpause();

  bool public paused = false;


  /**
   * @dev Modifier to make a function callable only when the contract is not paused.
   */
  modifier whenNotPaused() {
    require(!paused);
    _;
  }

  /**
   * @dev Modifier to make a function callable only when the contract is paused.
   */
  modifier whenPaused() {
    require(paused);
    _;
  }

  /**
   * @dev called by the owner to pause, triggers stopped state
   */
  function pause() onlyOwner whenNotPaused public {
    paused = true;
    Pause();
  }

  /**
   * @dev called by the owner to unpause, returns to normal state
   */
  function unpause() onlyOwner whenPaused public {
    paused = false;
    Unpause();
  }
}

// File: zeppelin-solidity/contracts/token/ERC20/PausableToken.sol

/**
 * @title Pausable token
 * @dev StandardToken modified with pausable transfers.
 **/
contract PausableToken is StandardToken, Pausable {

  function transfer(address _to, uint256 _value) public whenNotPaused returns (bool) {
    return super.transfer(_to, _value);
  }

  function transferFrom(address _from, address _to, uint256 _value) public whenNotPaused returns (bool) {
    return super.transferFrom(_from, _to, _value);
  }

  function approve(address _spender, uint256 _value) public whenNotPaused returns (bool) {
    return super.approve(_spender, _value);
  }

  function increaseApproval(address _spender, uint _addedValue) public whenNotPaused returns (bool success) {
    return super.increaseApproval(_spender, _addedValue);
  }

  function decreaseApproval(address _spender, uint _subtractedValue) public whenNotPaused returns (bool success) {
    return super.decreaseApproval(_spender, _subtractedValue);
  }
}

// File: contracts/CyberMilesToken.sol

contract TestToken is PausableToken {

    string public name = "Test Token";
    string public symbol = "TTT1";
    uint public decimals = 10;
    uint public totalSupply = 100000000000000000000;

    constructor () public {
        balances[msg.sender] = totalSupply;
    }
} 

Click on Compile and choose the contract TestToken to deploy to the chain.

You can call its functions directly from inside BUIDL when the contract is deployed successfully on the CyberMiles blockchain. You will see the owner, total supply of this CRC20 token. You can also transfer your CRC20 tokens to a CMT address. You even can transfer the ownership of this smart contract.

All that happen on the blockchain will be recorded on the blockchain explorer. You can go to the blockchain explorer for CMT cmttracking.io to check out your CRC20 tokens as well.

There is a question for you. Do you know how to let your CRC20 token appear in the CyberMiles App?